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Abstract

Nuclear correlation functions reveal interesting physical properties of atomic nuclei,
including ground state energies and scattering potentials. However, calculating their
values is computationally intensive due to the fact that the number of terms from
quantum chromodynamics in a nuclear wave function scales exponentially with atomic
number.

In this thesis, we demonstrate two methods for speeding up this computation.
First, we represent a correlation function as a sum of the determinants of many small
matrices, and exploit similarities between the matrices to speed up the calculations of
the determinants. We also investigate representing a correlation function as a sum of
functions of bipartite graphs, and use isomorph-free exhaustive generation techniques
to find a minimal set of graphs that represents the computation.
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Chapter 1

Lattice QCD

1.1 The Discretized Path Integral

The path integral formulation of quantum mechanics indicates that the propagator

of some quantum system can be written as:

〈ψ(x0, t0)|ψ(x1, t1)〉 = 〈x0|e−H(t1−t0)|x1〉 =

∫
Dx(t)e−S[x] (1.1)

Here, Dx(t) is an integral over all possible paths the particle can take between x0

and x1. S[x] is the action of a path. The classical action for a particle moving in a

potential V is

S[x] =

∫ t1

t0

dtL(x, ẋ) =

∫ t1

t0

dt

[
1

2
mx′(t)2 + V (x(t))

]
(1.2)

This formulation is continuous, so to put it on a computer it must be discretized.

A four dimensional lattice is used, with three spatial coordinates and one time coor-

dinate, n elements along each lattice dimension, and spacing a. A given path x(t)

becomes a n-element vector with one element in each time slice. Now, the action is

a sum, with a discretized derivative:

S[x] =
n∑

i=0

1

2
x′2i + V (xi) (1.3)
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The derivative can be discretized based on the Taylor expansion of x(t):

x(t+ a) = x(t) +
1

1!
x′(t)a+

1

2!
x′′(t)a2 +

1

3!
x′′′(t)a3 + . . . (1.4)

The simplest discretization of the derivative considers the first two terms in the ex-

pansion:

x(t+ a) = x(t) +
1

1!
x′(t)a+O(a2) (1.5)

x′(t) =
x(t+ a)− x(t)

a
+O(a) (1.6)

This has an error term linear in a. By including higher-order terms from the Taylor

expansion, this term can be reduced to an arbitrary power of a.

The integral over all paths becomes an integral over the value of x at each lattice

time slice: ∫
Dx(t)→

∫
dx1dx2 . . . dxn−1 (1.7)

Since the start and end positions are held fixed, there is no need to integrate over

them.

After discretizing in space, the path integral becomes a sum over each of the time

slices:

〈x0|e−H(t1−t0)|x1〉 =
∑
x1

∑
x2

. . .
∑
xn−1

e−S[{x0,x1,x2,...,xn}] (1.8)

1.2 The Monte Carlo Integral

Unfortunately, computing Equation 1.8 via quadratures is incredibly inefficient, re-

quiring n3n evaluations of the action. Instead, a randomized Monte Carlo process can

be used to estimate the propagator value.

In particular, the expectation value of an observable defined as a functional over

a given path Γ[x] is given by

〈Γ〉 =
∑
[x]

Γ[x]e−S[x] (1.9)
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Instead of generating all paths and measuring the action, the Metropolis algorithm,

described in [10], generates paths with probability

P ([x]) = e−S[x]. (1.10)

Therefore, given a set of paths {[x]} generated in this way, the expectation value

of Γ can be approximated by simply summing over Γ[x].

To evaluate nuclear observables, we need to consider quantum chromodynamics

on the lattice. The conceptual picture described above stays the same, but instead

of particle paths, observables are computed over configurations of quark and gluon

fields. Furthermore, the classical action is no longer used; instead, the classical QCD

action is approximated using combinations of loops on the lattice, also described in

[10]. In addition, there are many more degrees of freedom, since each lattice point is

no longer a scalar, but a tensor with spin, color, and flavor indices.

1.3 Nuclear Creation and Annihilation Operators

Here, we focus on the problem of evaluating specific operators on a single field con-

figuration in a given volume. The eventual goal is to find ground state energies of

atomic nuclei, which can be extracted from the large t limit of 〈N̄h(0)Nh(t)〉:

〈N̄h(0)Nh(t)〉 = 〈N̄h|e−Ht|Nh〉 =
∑
n

〈N̄h|n〉e−Ent〈n|Nh〉 (1.11)

where Nh is a nuclear creation operator built from quark and gluon fields described

by quantum numbers h. In the large t limit, all non-ground state terms go to zero

because of the exponential damping and we can recover the ground state energy of

the system.

First, we define the nuclear creation operator N̄h in terms of quark creation op-

erators. If Nh has A nucleons and nq quarks, it can described as a tensor product of

13



individual quark creation operators, taking the form

N̄h =
∑
{a}

w
a1...anq

h q̄(a1)q̄(a2) . . . q̄(anq) (1.12)

where q̄(a1) is a quark creation operator for a quark with quantum numbers repre-

sented by a1. wh is an antisymmetric tensor that is nonzero only when none of the

indices are equal and the combination of the quark quantum numbers is equal to the

nuclear quantum number [4].

If there are N possible quark indices, the number of non-zero terms in the sum is

N !

nq!(N − nq!)
(1.13)

after accounting for permutations. A number of strategies, described in [1], can reduce

this number by taking into account various physical symmetries and by considering

only simple spatial wave functions.

For example, for an alpha particle, which has four nucleons and twelve quarks,

we consider a wave function where all particles are on the same site, a multi-site

wave function with two deuterons, a multi-site wave function with a diproton and a

dineutron, and a multi-site wave function with a triton and a proton. Each of these

wave functions has a different number of terms. Since there are twelve quarks in an

alpha particle, and there can be only twelve quarks on a single site, the wave function

with all particles on the same site has only one term. The diproton-dineutron and

triton-proton wave functions must be rotationally symmetric, so they have 5718 and

1944 terms respectively.

1.4 Nuclear Correlation Functions

To actually find the nuclear ground state energy, we must find the correlation function

between two nuclear wave functions, a source and a sink, of the form

〈N1(t)|N̄2(0)〉 (1.14)
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which is an integral over the gauge fields and quark configurations of each wave

function. For a specific configuration of gluon degrees of freedom, this is given by

N1(t)N̄2(0) =

∫
DqDq̄e−S(

∑
{a}

w
a1...anq

1 q̄(a1)q̄(a2) . . . q̄(anq))(
∑
{a}

w
a1...anq

2 q̄(a1)q̄(a2) . . . q̄(anq))

(1.15)

This can be rephrased in terms of quark propagator S(q(a0), q(a1); t) as

N1(t)N̄2(0) = e−S
∑

w1w2

∑
i

∑
j

S(q(ai1), q(aj1))S(q(ai2), q(aj2)) . . . S(q(ainq), q(ajnq))ε
iεj

(1.16)

where εi and εj ensure that the indices are fully antisymmetrized.

Fast evaluation of this sum is critical. Even moderately complex wave functions

have thousands of terms, so the total number of terms that needs to be calculated

is in the tens or hundreds of millions. Each of these calculations must be done on a

number of gauge configurations, so even correlators made from simple wave functions

quickly become difficult to compute.

1.5 Correlator Graphs

The most natural way to represent these sums is as a set of bipartite graphs, as in

Figure 1-1. Hadrons in a given pair of sink-source terms are represented as nodes

on the right or left sides of a graph. Edges are allowed between two nodes only if

one is in the sink and the other is in the source, and if the hadrons share a quark

with the same flavor. Further, hadrons are constrained to have the correct number

of edges for each flavor they contain (a proton has two up edges and one down edge,

for example). Chapter 3 describes implementation of an isomorph-free generation

algorithm for these graphs and its implications.
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Figure 1-1: Graphs of two terms in a single-site triton-triton correlator. Dashed lines
represent down quarks, solid lines represent up quarks.

1.6 Correlator Matrices And The Determinant Method

The sum over indices i and j in Equation 1.16 is equivalent to calculating the deter-

minant of a matrix where the (i, j)th element is the correlator between the ith source

quark and the jth sink quark [4]. The correlation function is then

N1(t)N̄2(0) = e−S
∑

w1w2 det(G), (1.17)

where

Gij = S(q(ai), q(aj)). (1.18)

Normally, this determinant can be calculated in O(N3
q ) time by using the LU

factorization of the matrix. Chapter 2 describes faster methods of finding the deter-

minant using relationships between different pairs of sink-source terms.
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Chapter 2

Fast Updates to LU Factorization

2.1 LU Factorization

The LU factorization of a matrix M finds an upper triangular matrix U and a unit

lower triangular matrix L such that M = LU . The determinant of M is then the

products of the determinants of L and U , which can be quickly computed as the

product of elements on the diagonals. For example, a 3× 3 matrix factors into l and

u as: 
m11 m12 m13

m21 m22 m23

m31 m32 m33

 =


1 0 0

l21 1 0

l31 l32 1



u11 u12 u13

0 u22 u23

0 0 u33

 (2.1)


m11 m12 m13

m21 m22 m23

m31 m32 m33

 =


u11 u12 u13

l21u11 l21u12 + u22 l21u13 + u23

l31u11 l31u12 + l32u22 l31u13 + l32u23 + u33

 . (2.2)

This reveals a method for determining the elements of l and u:

uij = mij −
i∑

k=1

likukj (2.3)

lij =
1

ujj

(
mij −

j∑
k=1

likukj

)
(2.4)
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There exist non-singular matrices that do not have an LU factorization of this

form. For example, if

M =

0 1

1 0

 (2.5)

then u11 = 0, and there is no l21 such that u11l21 = 1. Furthermore, in an numerical

computation, even without zero entries, small values on the diagonal of U can cause

the algorithm to become unstable, even on well-conditioned matrices.

However, any matrix that has all non-singular upper-left square matrices has a

unique LU decomposition, determined by the procedure above. Furthermore, most1

matrices can be transformed into a form suitable for LU decomposition by permuting

the rows to maximize the magnitudes of the elements on the diagonals, a process

known as pivoting. This gives a factorization PA = LU where P is a permutation

matrix.

2.1.1 Computational Cost

LU factorization requires O(n3) multiply-add operations. Specifically, computing the

first row of U requires zero operations for n elements, computing the second row

requires one operation each for n − 1 elements, and so on; likewise, computing the

first column of L requires one divide and zero multiply-adds for n − 1 elements, the

second column requires one divide and one multiply-add for n − 2 elements, and so

on. Therefore, the total number of operations is

n∑
k=1

k(n− k) +
n∑

k=1

(k − 1)(n− k) =
n∑

k=0

(kn− k2) =
n3

3
− n2

2
+
n

6
(2.6)

fused multiply-adds and
n∑

k=1

(n− k) =
n2

2
− n

2
(2.7)

1In practice, this works for almost all matrices [16], but finding realistic counterexamples is a
current area of research [7]
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(a) Updated row (b) Updated col-
umn

Figure 2-1: Updating the ith row or column of an LU factorization takes two phases.
First, the ith row of the factorization is calculated, using the part of the matrix shown
in green. Then, the submatrix in blue is updated.

divides (alternatively, the reciprocals of the diagonal elements of U can be cached

and these operations can be multiplies instead). Further, n multiplies are required to

find the determinant given the LU factorization.

2.2 Determinant Updates

A number of matrices in the correlators described in Chapter 1 are very similar,

differing only by a single row or column. This allows several O(n2) methods, and

even some O(n) methods, for finding the determinant of the matrix M + uvT , where

the LU factorization of M is known.

2.2.1 Optimality

No general method faster than O(n2) is possible. If it was, it would be possible

to compute the determinant of an arbitrary matrix in time faster than O(n3) by

performing n row updates2. However, as will be shown in Section 2.2.4, restricting

the class of updates allows linear-time algorithms.

19



2.2.2 LU Update

The simplest update to an LU factorization simply recomputes all the terms that

involve the modified elements, as seen in Figure 2-1. In the average case, this is

faster than computing the factors from scratch, but it still has the same worst case

complexity, which arises if the first row is modified. The cost of updating the actual

changed column is of order O(n2), while the cost of updating the trailing submatrix

(blue in Figure 2-1) is O(k3) where k is the dimension of that submatrix.

2.2.3 Bennett’s Algorithm

Bennett [2] presents an algorithm which computes an arbitrary rank-1 update to an

LU factorization, of the form A′ = A+uvT , in O(n2) time. The algorithm is modified

[15] to proceed row-by-row for optimal memory access, and requires 4n2 operations

to complete.

Both these approaches work on matrices that were originally factored with pivot-

ing, but fails if the new row provides a poor pivot. When tested in practice, pivoting

was found to be unnecessary, and numerical instability was not an issue, since the

magnitude of the largest difference between the matrices factored with LAPACK and

the matrices factored with the update algorithms was found to be less than one part

in 108.

2.2.4 Matrix Determinant Lemma

Updating LU factorizations without repivoting is numerically unstable, and updating

factorizations with repivoting is complicated. Instead, we can compute the determi-

nant of the modified matrix without calculating the new LU factorization. This relies

on the identity [6]

det(A+ uvT ) = (1 + vTA−1u) det(A). (2.8)

2It is actually possible to compute the determinant in O(n2.3729) time, using the Coppersmith-
Winograd algorithm for matrix multiplication, but this is of more theoretical than practical interest
due to the large constant factors involved
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For a row update, u is e1; for a column update, v is e1.

To prove this, we first see that

det(I + uvT ) = (1 + vTu) (2.9)

For our purposes, it is sufficient to consider uvT to be a single row or column. The

only element of this that matters when calculating the determinant of I + uvT is the

one on the diagonal, since the determinant of the matrix will be the product of the

elements on the diagonal. From here, it is clear that

det(A+ uvT ) = det(A) det(I + A−1uvT ) = det(A) det(I + vTA−1u) (2.10)

A−1u is easily computed using the LU factorization, since the systems Ux = b

and Ly = x can be solved in a total of n2 − n multiply-adds and 2n divides.

Somewhat surprisingly, it is possible to calculate some rank-1 updates in O(n)

time. If a parent matrix A has the ith row changed in two different ways to get two

new matrices, the first new determinant will be

det(A+ eiv
T
1 ) = (1 + vT1 A

−1ei) det(A), (2.11)

and the second will be

det(A+ eiv
T
2 ) = (1 + vT2 A

−1ei) det(A). (2.12)

The term A−1ei corresponds to the ith column of the inverse of A. This can be

cached after the first computation so that the second computation requires only the

computation of a vector-vector inner product.

Note that this does not violate the principle given in Subsection 2.2.1, since mul-

tiple rows cannot be changed without recalculating the inverse.
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2.3 Finding Execution Strategies

Given an algorithm for updating LU factorizations, it is useful to find an evaluation

order for the matrices that maximizes the number of matrices that can be computed

with updates instead of from scratch. Given a set of matrices of lattice element

lookups that correspond to a computation, we use the MapReduce-MPI library (http:

//mapreduce.sandia.gov) [14] to generate a graph where adjacent nodes represent

matrices separated by a rank-1 update, using the map and reduce functions in Figure

2-2.

The optimal strategy for LU updates is very simple, since only one matrix in every

connected component needs to be computed from scratch. Breadth-first search works

well, because it allows matrices to be discarded quickly after they are first calculated.

On the other hand, if only determinant updates are used, the optimal strategy is

to compute from scratch the matrices in the minimum dominating set of the graph of

nodes. This is defined as the smallest set of vertices such that every vertex is adjacent

to at least one member of the set. Unfortunately, computing this set is exponentially

difficult, but a simple greedy algorithm provides a good approximation [13]. At each

step, the vertex with the most edges is chosen, then it and its neighbors are removed

from the graph.

2.4 Implementation and Results

A set of matrices corresponding to five terms in a source triton-proton wavefunction

and all 1944 terms in a triton-proton sink wavefunction were computed on 1024

sites (a 43 × 8 lattice). When breadth-first search was used to find an execution

strategy, 5120 matrices were computed from scratch, and the remaining 9939415 were

calculated using the LU update method from Section 2.2.2. When the dominating set

approach was used, 1605208 (17%) matrices were computed from scratch and 7781764

(83%) matrices were calculated with updating. When the inverse was cached in

the determinant update, 2225577 (23%) determinants were calculated in O(n2) time

22
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Map(m : Matrix)
for i := 0 ; i < m.size; i = i+ 1 do

m′ := m;
m′[i, 0 : m.size] = 0;
Output(m’, m);

end
for i := 0 ; i < m.size; i = i+ 1 do

m′ := m;
m′[0 : m.size, i] = 0;
Output(m’, m);

end
Reduce(M : [Matrix])
for (m,n)←M ×M do

Output(m, n);
end

Figure 2-2: The map and reduce functions used to generate the graph of matrices

without caching, and 5556187 (60%) determinants were calculated in O(n) time with

caching. The total number of determinants calculated for the two approaches differs

slightly due to differences in methods used to eliminate identical matrices. The times

taken to calculate the determinants are given in Figure 2-3. The dominating set

strategy requires substantially more matrices to be factored from scratch, but allows

the very fast cached matrix determinant lemma algorithm to be used. This method

is about six times as fast than the slowest method, which uses LAPACK to calculate

the determinants from scratch.

2.4.1 Performance Enhancements

The program written to calculate the determinants is relatively unoptimized. A wide

array of improvements could substantially enhance its performance. First of all, the

code should be extremely parallelizable, since each parent node with its child nodes

can be computed separately. Next, the vector units could be used more effectively.

Currently, each vector instruction processes a single complex number, using 128 bits;

however, AVX instructions on recent Intel processors support 256-bit wide instruc-

tions and the vector unit on a Xeon Phi processor is 512 bits wide, so this could
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potentially give a two to four fold speedup. Additionally, improving the quality of

the dominating set approximation could be extremely helpful. Currently, only 17%

of the matrices are factored from scratch, but those calculations take up more than

half of the running time. It should be possible to generate the matrices in an optimal

order by considering the structure of terms in each wave function; if two terms differ

by a single quark index, all the matrices involving those terms will differ by a single

row or column. Finally, prefetching matrix terms used in a group of determinants

could significantly reduce the time spent in memory accesses.
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Chapter 3

Graph Representation of

Contractions

The graphs described in Section 1.5 are represented as a set of vertices that correspond

to hadrons, and edges between them that correspond to the selection of a particular

set of quark propagators.

This structure is known as a colored multigraph, which is a graph that allows

multiple colored edges between colored vertices. Edges that correspond to the same

flavor (up, down, strange) have the same color, and vertices that have the same color

have the same quark constituents and are both in the sink wave function or both in

the source wave function.

Our graphs have a fixed number of vertices; we will build them by adding edges.

CallG with the added edge between vi and vj augmented, and refer to it as {G, (vi, vj)}.

The source half of G is denoted by Gsrc while the sink half is denoted by Gsnk.

3.1 Graph Isomorphisms and Automorphism Groups

Finding isomorphic graphs for a term in a correlator reveals important information

about the structure of that correlator, and indicates similarities between graphs that

can potentially be leveraged to reduce the amount of computation needed to evaluate

the correlator.
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Figure 3-1: Two isomorphic graphs. An automorphism of the graph on the left is
given by the arrows shown. The vertices 1 and 4 are in the same orbit; the vertices
5 and 7 are in a different orbit, and the other vertices are in their own orbits.

We use the BLISS library [9] for isomorphism testing and generation of automor-

phism groups for graphs.

Graphs G1 and G2 are isomorphic if there is a relabeling G′2 of the vertices in

G2 such that G′2 = G1. Alternatively, there is some permutation of the rows and

columns of G2’s adjacency matrix such that it is the same as G1’s (permutations

are restricted: two rows can only be swapped if the corresponding columns are also

swapped and if they are of the same color). BLISS provides a method to generate a

canonical representation of a graph, such that two graphs have the same canonical

representation if and only if they are isomorphic. The theoretical complexity of graph

isomorphism is unknown [8], but existing algorithms, while exponential in worst-case

running time, work well for small graphs in practice [11].

The automorphism group of a particular graph G is the set of relabelings of G’s

vertices that leave G unchanged. In other words, if G is an adjacency matrix, the

automorphism group is the set of permutation matrices P such that PG = G. The

generators of the automorphism groups are some subset of the permutations that can

be composed to get every member of the group. BLISS provides a method to find

the generators of a graph’s automorphism group.

Related to the notion of an automorphism group is the idea of vertex orbits. Two
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vertices vi, vj are in the same orbit if there is some member of the automorphism

group that maps vi to vj. They are in the same k-orbit if there is a member of the

automorphism group that changes at most k elements and maps vi to vj. Each vertex

belongs to exactly one orbit. Orbits are calculated by iterating over the automorphism

generators and combining the indices of vertices that map to one another in a disjoint-

set data structure [3, Chapter 21]. Each orbit has a canonical vertex which can be

selected by choosing the vertex with the lowest number.

BLISS does not support edge coloring. To implement this feature, when graphs

are sent to BLISS, each edge is bisected by a vertex with a color corresponding to the

edge color.

3.2 Generating Graphs

If the contributions of two isomorphic graphs to a correlator are equal, then evaluating

two isomorphic graphs is a duplication of effort. Eliminating isomorphic graphs can

reduce the total number of needed computations by several orders of magnitude. In

general, a particle with u up quarks and d down quarks has u!d! possible graphs.

Even for an alpha particle nucleus, there are 518400 separate graphs. However, each

of these is isomorphic to one of only 236 graphs.

The problem of generating an isomorph-free set of graphs with given properties is

discussed at length in [12]. A very simple approach to generating a set of isomorph-

free graph is presented in Figure 3-2. This algorithm builds up the graph one source

vertex at a time, connecting every possible set of sink vertices to the source vertex,

keeping a graph only if it is the first graph generated in its isomorphism class.

Although the number of graphs output by the algorithm is relatively small, the

number of intermediate graphs is much larger. To see why, consider the number of

graphs in S(nv−1) compared to the number of graphs in S(nv). Each graph G in Snv

will generate as many graphs in S(nv−1) as there are orbits in Gsnk, since graphs in

S(nv−1) can be generated by removing an edge from a source vertex to its set of sink

vertices in a graph in S(nv). This does not precisely determine the number of graphs
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Data: A starting graph G which has no edges of color C and nv source
vertices, which can have a total of ne edges added

Result: A set of graphs with all edges of color C added
S(0) := {G};
for i← 1 to nv do

S(i) := {};
for G ∈ S(0) do

for V ∈ {{v ∈ Gsnk | degree(v) < valence(v)} | |V | = valence(vi)} do
G′ := G;
for vj ∈ V do

G′ := G′, (vi, vj);
end

S(i) = S(i) ∪G′;
end

end

Remove duplicates of graphs in the same isomorphism class in S(i).
end

Figure 3-2: A simple algorithm for finding an isomorph-free set. This algorithm is
slow because it requires a very large number of comparisons between graphs.

in Si, but implies that it grows roughly exponentially for 0 < i < nv

2
and shrinks

roughly exponentially for nv

2
< i < nv.

This exponential growth makes this algorithm very slow, since graph comparisons

take many memory accesses. Fortunately, the isomorph-free set can be generated

much more efficiently without doing any graph comparisons. To understand how this

is possible, consider the reasons that graphs in the same isomorphism class can appear

in S(i):

1. Starting from graph G, vi is connected to two sets that are equivalent under an

automorphism relation (see Figure 3-5c).

2. Connecting vi to set V1 starting from graph G1 creates the same graph as

connecting vi to set V2 starting from graph G2 (see Figure 3-5a).

The first source of isomorphic graphs can be eliminated by adding sink vertices

only if they are the canonical vertex in their orbits before adding the edges. The

edges must be added one at a time to allow for multiple identical edges to be added

to the same graph.
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Figure 3-3: Adding different vertices to different graphs can produce two graphs that
are isomorphic to each other. Only accepting graphs where the most recently added
graph is the lowest numbered orbit would prevent at least one of these graphs from
being generated.
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Data: A starting graph G which has no edges of color C and nv source
vertices, which can have a total of ne edges added

Result: A set of graphs with all edges of color C added
S(0) := {G};
for i← 1 to nv do

S(i) := {};
for G ∈ S(0) do

for V ∈ {{v ∈ Gsnk | degree(v) < valence(v)} | |V | = valence(vi)} do
G′ := G;
for vj ∈ V do

if vj is the canonical vertex in its orbit in G′ then
G′ := G, (vi, vj);

else
continue;

end

end
if vi is in the lowest numbered vertex orbit in the canonical labeling
of G′ then

S(i) = S(i) ∪G′;
end

end

end

end

Figure 3-4: A fast algorithm for finding an isomorph-free set.

The second source can be eliminated by accepting a newly created graph only if

vi is in the lowest-numbered orbit.

The revised algorithm is presented in Figure 3-4.

In other words, there are four conditions for connecting a sink vertex vj to the

current source vertex vi:

• C1: vj must have an available edge to add

• C2: Sink vertices must be added in order - vj must have a higher index than

vi’s other connections.

• C3: vj must be the canonical vertex in its orbit - no two equivalent edges should

be added to the same graph.
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• C4: Once a set of vjs is connected, vi must be in the lowest-numbered vertex

orbit in the canonical representation.

It can be shown that this procedure generates a member of every isomorphic group

and does not generate any duplicates.

Since we build up the graphs by adding one source vertex at a time, we can

inductively prove that every graph is generated at least once; that is, given S(k−1),

we can produce each graph in S(k).

Consider a particular graph G in S(k). It has k subgraphs that have k−1 attached

source vertices. Each of these has a set of edges that can be added back to get G.

Suppose we have every graph with k−1 source vertices. To prove that we generate

the graph G with k source vertices, consider each of its subgraphs with k − 1 source

vertices. For each of these, there is a set of augmentations that can be added to get

G.

Condition C1 does not prevent any of these augmentations from happening, since

the vertices we need to augment all have open edges by definition.

Condition C2 means that only one permutation of each set of augmentations gets

added to each graph.

Condition C3 prevents two equivalent edges from being added to the graph, but

some edge in that orbit will still be added.

C4 allows an augmentation from exactly one subgraph that gives G, since G has

some source vertex vlow that has the lowest number in the canonical representation. A

subgraph of G that has had vlow disconnected is the only one that can be augmented

to get G.

Next, we show that at most one copy of each graph is generated.

Suppose we have an isomorphism-free set S(k−1) and two isomorphic graphs G and

G′ are generated in S(k).

Either G and G′ were generated from the same subgraph, or they were generated

from different subgraphs.

Suppose they were generated from different subgraphs F ′ and F ′′. Condition C4

implies that the vertex added to F ′ must be in the same orbit as the vertex added to
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F ′′, as seen in Figure 3-5a. This means that F ′ and F ′′ must be isomorphic, which

contradicts the definition of S(k−1), as in Figure 3-5b.

Otherwise, G and G′ were generated from the same (k−1)-subgraph S. If vs in G

connects to vertices v1, v2, v3, . . ., then vs in G′ must connect to vertices v′1, v
′
2, v
′
3, . . .,

where vi is in the same orbit as v′i. If vi 6= v′i, only the lower numbered one can be

added to S because of C3, as demonstrated in Figure 3-5c. Therefore, all the vi and

v′i are the same. C2 ensures that each possible set of three vertices is added only

once. Therefore, a particular graph S will not be augmented in two different ways to

produce isomorphic graphs.

3.3 Application

This approach is useful if two isomorphic graphs have correlators that can be easily

calculated from one another. For example, if all the particles were on the same site,

two isomorphic graphs would have equal or opposite correlators, depending on the

number of exchanges between the graphs. However, for non-trivial wave functions,

this leads to the value of any operator being zero due to the Pauli exclusion principle.

Other applications of this strategy are being investigated. Applying a similar

approach to systems of mesons gives a recurrence that allows large systems to be

quickly computed by extending smaller systems [5], and it is possible that the tree of

graphs generated by the algorithms reveals a similar recurrence.
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(a) Either of the graphs on the left could
be augmented to get the the graph on the
right. However, only the top augmentation
has the added vertex as the vertex num-
bered 1, so the bottom augmentation will
not be allowed by condition C4.

(b) Both of the graphs on the left could
be augmented to produce the graph on the
right. However, since they are isomorphic,
the inductive condition means that only one
of them will exist.

(c) Adding the dashed green edge or the dotted red
edge would produce a graph isomorphic to the one
on the right. Only the red edge can be added, be-
cause vertices 3 and 4 are in the same orbit, and
3 has a lower labeling. C3 prevents the green edge
from being added.

Figure 3-5: An illustration of permitted and forbidden graph augmentations. The
numbering of the vertices represents the canonical labeling. Yet-to-be-added vertices
on the left are not considered for the labeling.
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